.. Mineye-Terranigma documentation master file ============================== Mineye-Terranigma Documentation ============================== Overview ======== ``Mineye-Terranigma`` is a research project for **probabilistic geological modeling** and **geophysical inversion**. The project combines state-of-the-art implicit geological modeling with Bayesian inference techniques. **Core Capabilities:** * **3D Geological Modeling**: Build implicit 3D models from structural data using `GemPy `_ * **Geophysical Forward Modeling**: Compute gravity and magnetic responses from geological models * **Probabilistic Inference**: Quantify uncertainty using `Pyro `_ and PyTorch * **Satellite Image Segmentation**: Bayesian classification of remote sensing data * **Joint Inversion**: Integrate multiple data sources for improved geological interpretations ---- Getting Started =============== .. toctree:: :maxdepth: 1 installation ---- .. _basic-examples: Basic Examples ============== Foundational workflows for 3D geological modeling and geophysical forward modeling. These examples introduce core concepts using real data from the **Tharsis mining district** in Spain. .. raw:: html
.. include:: examples_basic/index.rst :start-after:
:end-before: .. thumbnail-parent-div-close .. toctree:: :maxdepth: 2 :hidden: examples_basic/index ---- .. _probabilistic-examples: Probabilistic Modeling ====================== Advanced examples demonstrating uncertainty quantification, error propagation, and Bayesian inversion techniques for geological and geophysical applications. .. raw:: html
.. include:: examples_probabilistic/index.rst :start-after:
:end-before: .. thumbnail-parent-div-close .. toctree:: :maxdepth: 2 :hidden: examples_probabilistic/index ---- .. _segmentation-examples: Hyperspectral Segmentation ========================== Workflows for lithological segmentation of EnMap hyperspectral data using Bayesian inference. These examples cover feature extraction, preprocessing, and model comparison. .. raw:: html
.. include:: examples_segmentation/index.rst :start-after:
:end-before: .. thumbnail-parent-div-close .. toctree:: :maxdepth: 2 :hidden: examples_segmentation/index ---- Key Features ============ .. list-table:: :widths: 50 50 :header-rows: 0 * - **Bayesian Inference with Pyro** - **Geological Modeling with GemPy** * - The project uses PyTorch and Pyro for probabilistic programming, enabling: * **Variational Inference (VI)**: Fast approximate posterior estimation * **Hamiltonian Monte Carlo (HMC/NUTS)**: Accurate sampling for complex posteriors * **GPU Acceleration**: Scalable inference for large-scale inversions - Building on the GemPy framework, the project supports: * **Implicit Surface Modeling**: Continuous 3D geological surfaces from sparse data * **Structural Complexity**: Faults, unconformities, and erosive contacts * **Forward Modeling**: Gravity and magnetic field computations * **Uncertainty Quantification**: Probabilistic geological interpretations ---- API Reference ============= Detailed documentation of the Mineye-Terranigma Python API. .. toctree:: :maxdepth: 2 api_reference ---- Indices and Tables ================== * :ref:`genindex` * :ref:`search`